
Vimba

Vimba C++ Function
Reference

1.9.1

Function reference

Function reference
In this chapter you can find a complete list of all methods of the following classes/interfaces:
VimbaSystem, Interface, FeatureContainer, IRegisterDevice,
IInterfaceListObserver, ICameraListObserver, IFrameObserver, IFeatureObserver,
ICameraFactory, Camera, Frame, Feature, EnumEntry and AncillaryData.
Methods in this chapter are always described in the same way:

• The caption states the name of the function without parameters
• The first item is a brief description
• The parameters of the function are listed in a table (with type, name, and description)
• The return values or the returned type is listed
• Finally, a more detailed description about the function is given

2

Function reference

out VmbVersionInfo_t& version Reference to the struct where version information is copied

Name Description Type

VimbaSystem
GetInstance()
Returns a reference to the System singleton.

• VimbaSystem&

QueryVersion()
Retrieve the version number of VmbAPI.

• VmbErrorSuccess: always returned

This function can be called at any time, even before the API is initialized. All
other version numbers may be queried via feature access

Startup()
Initialize the VmbAPI module.

• VmbErrorSuccess: If no error
• VmbErrorInternalFault: An internal fault occurred

On successful return, the API is initialized; this is a necessary call. This method
must be called before any other VmbAPI function is run.

Shutdown()
Perform a shutdown on the API module.

• VmbErrorSuccess: always returned

This will free some resources and deallocate all physical resources if applicable.

3

Function reference

out InterfacePtrVector& interfaces Vector of shared pointer to Interface object

Description Name Type

GetInterfaces()
List all the interfaces currently visible to VmbAPI.

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorStructSize: The given struct size is not valid for this API version
• VmbErrorMoreData: More data were returned than space was provided
• VmbErrorInternalFault: An internal fault occurred

All the interfaces known via a GenTL are listed by this command and filled into
the vector provided. If the vector is not empty, new elements will be appended.
Interfaces can be adapter cards or frame grabber cards, for instance.

GetInterfaceByID()
Gets a specific interface identified by an ID.

 Type Name Description

in const char* pID The ID of the interface to get (returned by GetInterfaces())

out InterfacePtr& pInterface Shared pointer to Interface object

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadParameter: "pID" is NULL.
• VmbErrorStructSize: The given struct size is not valid for this API version
• VmbErrorMoreData: More data were returned than space was provided

An interface known via a GenTL is listed by this command and filled into the
pointer provided. Interface can be an adapter card or a frame grabber card, for
instance.

4

Function reference

out CameraPtrVector& cameras Vector of shared pointer to Camera object

Description Name Type

OpenInterfaceByID()
Open an interface for feature access.

 Type Name Description

in const char* pID The ID of the interface to open (returned by GetInterfaces())

out InterfacePtr& pInterface A shared pointer to the interface

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorNotFound: The designated interface cannot be found
• VmbErrorBadParameter: "pID" is NULL.

An interface can be opened if interface-specific control is required, such as I/O
pins on a frame grabber card. Control is then possible via feature access
methods.

GetCameras()
Retrieve a list of all cameras.

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorStructSize: The given struct size is not valid for this API version
• VmbErrorMoreData: More data were returned than space was provided

A camera known via a GenTL is listed by this command and filled into the
pointer provided.

GetCameraByID()
Gets a specific camera identified by an ID. The returned camera is still closed.

5

Function reference

 Type Name Description

in const char* pID The ID of the camera to get

out CameraPtr& pCamera Shared pointer to camera object

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadParameter: "pID" is NULL.
• VmbErrorStructSize: The given struct size is not valid for this API version
• VmbErrorMoreData: More data were returned than space was provided

A camera known via a GenTL is listed by this command and filled into the
pointer provided. Only static properties of the camera can be fetched until the
camera has been opened. "pID" might be one of the following: "169.254.12.13"
for an IP address, "000F314C4BE5" for a MAC address or "DEV_1234567890"
for an ID as reported by Vimba

OpenCameraByID()
Gets a specific camera identified by an ID. The returned camera is already open.

Type Name Description

in const char* pID The unique ID of the camera to get

in VmbAccessModeType eAccessMode The requested access mode

out CameraPtr& pCamera A shared pointer to the camera

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorNotFound: The designated interface cannot be found
• VmbErrorBadParameter: "pID" is NULL.

A camera can be opened if camera-specific control is required, such as I/O pins
on a frame grabber card. Control is then possible via feature access methods.
"pID" might be one of the following: "169.254.12.13" for an IP address,
"000F314C4BE5" for a MAC address or "DEV_1234567890" for an ID as
reported by Vimba

6

Function reference

in const ICameraListObserverPtr& pObserver A shared pointer to an object derived from
ICameraListObserver

Description Name Type

in const ICameraListObserverPtr& pObserver A shared pointer to an object derived from
ICameraListObserver

Description Name Type

in const IInterfaceListObserverPtr& pObserver A shared pointer to an object derived
from IInterfaceListObserver

Description Name Type

RegisterCameraListObserver()
Registers an instance of camera observer whose CameraListChanged() method gets called as soon as a
camera is plugged in, plugged out, or changes its access status

• VmbErrorSuccess: If no error
• VmbErrorBadParameter: "pObserver" is NULL.
• VmbErrorInvalidCall: If the very same observer is already registered

UnregisterCameraListObserver()
Unregisters a camera observer

• VmbErrorSuccess: If no error
• VmbErrorNotFound: If the observer is not registered
• VmbErrorBadParameter: "pObserver" is NULL.

RegisterInterfaceListObserver()
Registers an instance of interface observer whose InterfaceListChanged() method gets called as soon as
an interface is plugged in, plugged out, or changes its access status

• VmbErrorSuccess: If no error
• VmbErrorBadParameter: "pObserver" is NULL.
• VmbErrorInvalidCall: If the very same observer is already registered

7

Function reference

in const IInterfaceListObserverPtr& pObserver A shared pointer to an object derived
from IInterfaceListObserver

Description Name Type

in const ICameraFactoryPtr& pCameraFactory A shared pointer to an object derived from
ICameraFactory

Description Name Type

UnregisterInterfaceListObserver()
Unregisters an interface observer

• VmbErrorSuccess: If no error
• VmbErrorNotFound: If the observer is not registered
• VmbErrorBadParameter: "pObserver" is NULL.

RegisterCameraFactory()
Registers an instance of camera factory. When a custom camera factory is registered, all instances of
type camera will be set up accordingly.

• VmbErrorSuccess: If no error
• VmbErrorBadParameter: "pCameraFactory" is NULL.

UnregisterCameraFactory()
Unregisters the camera factory. After unregistering the default camera class is used.

• VmbErrorSuccess: If no error

8

Function reference

Interface
Open()
Open an interface handle for feature access.

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorNotFound: The designated interface cannot be found

An interface can be opened if interface-specific control is required, such as I/O
pins on a frame grabber card. Control is then possible via feature access
methods.

Close()
Close an interface.

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The handle is not valid

GetID()
Gets the ID of an interface.

Type Name Description

out std::string& interfaceID The ID of the interface

• VmbErrorSuccess: If no error

This information remains static throughout the object's lifetime

9

Function reference

out std::string& serialNumber The serial number of the interface

Description Name Type

GetType()
Gets the type, e.g. FireWire, GigE or USB of an interface.

Type Name Description

out VmbInterfaceType& type The type of the interface

• VmbErrorSuccess: If no error

This information remains static throughout the object's lifetime

GetName()
Gets the name of an interface.

Type Name Description

out std::string& name The name of the interface

• VmbErrorSuccess: If no error

GetSerialNumber()
Gets the serial number of an interface.

• VmbErrorSuccess: If no error

GetPermittedAccess()
Gets the access mode of an interface.

10

Function reference

Vimba C++ Manual 1.9.1 60

• VmbErrorSuccess: If no error

out VmbAccessModeType& accessMode The possible access mode of the interface

Description Name Type

11

Function reference

out FeaturePtrVector& features The container for all queried features

Description Name Type

FeatureContainer
FeatureContainer constructor
Creates an instance of class FeatureContainer

FeatureContainer destructor
Destroys an instance of class FeatureContainer

GetFeatureByName()
Gets one particular feature of a feature container (e.g. a camera)

 Type Name Description

in const char* name The name of the feature to get

out FeaturePtr& pFeature The queried feature

• VmbErrorSuccess: If no error
• VmbErrorDeviceNotOpen: Base feature class (e.g. Camera) was not opened.
• VmbErrorBadParameter: "name" is NULL.

GetFeatures()
Gets all features of a feature container (e.g. a camera)

• VmbErrorSuccess: If no error
• VmbErrorBadParameter: "features" is empty.

Once queried, this information remains static throughout the object's lifetime

12

Function reference

IRegisterDevice
ReadRegisters()
Reads one or more registers consecutively. The number of registers to be read is determined by the
number of provided addresses.

 Type Name Description

in const Uint64Vector& addresses A list of register addresses

out Uint64Vector& buffer The returned data as vector

• VmbErrorSuccess: If all requested registers have been read
• VmbErrorBadParameter: Vectors "addresses" and/or "buffer" are empty.
• VmbErrorIncomplete: If at least one, but not all registers have been read. See overload

ReadRegisters(const Uint64Vector&, Uint64Vector&, VmbUint32_t&).

ReadRegisters()
Same as ReadRegisters(const Uint64Vector&, Uint64Vector&), but returns the number of successful
read operations in case of an error.

 Type Name Description

in const Uint64Vector& addresses A list of register addresses

out Uint64Vector& buffer The returned data as vector

out VmbUint32_t& completedReads The number of successfully read registers

• VmbErrorSuccess: If all requested registers have been read
• VmbErrorBadParameter: Vectors "addresses" and/or "buffer" are empty.
• VmbErrorIncomplete: If at least one, but not all registers have been read.

WriteRegisters()
Writes one or more registers consecutively. The number of registers to be written is determined by the
number of provided addresses.

13

Function reference

 Type Name Description

in const Uint64Vector& addresses A list of register addresses

in const Uint64Vector& buffer The data to write as vector

• VmbErrorSuccess: If all requested registers have been written
• VmbErrorBadParameter: Vectors "addresses" and/or "buffer" are empty.
• VmbErrorIncomplete: If at least one, but not all registers have been written. See overload

WriteRegisters(const Uint64Vector&, const Uint64Vector&, VmbUint32_t&).

WriteRegisters()
Same as WriteRegisters(const Uint64Vector&, const Uint64Vector&), but returns the number of
successful write operations in case of an error VmbErrorIncomplete.

 Type Name Description

in const Uint64Vector& addresses A list of register addresses

in const Uint64Vector& buffer The data to write as vector

out VmbUint32_t& completedWrites The number of successfully written registers

• VmbErrorSuccess: If all requested registers have been written
• VmbErrorBadParameter: Vectors "addresses" and/or "buffer" are empty.
• VmbErrorIncomplete: If at least one, but not all registers have been written.

ReadMemory()
Reads a block of memory. The number of bytes to read is determined by the size of the provided buffer.

 Type Name Description

in const VmbUint64_t& address The address to read from

out UcharVector& buffer The returned data as vector

• VmbErrorSuccess: If all requested bytes have been read
• VmbErrorBadParameter: Vector "buffer" is empty.
• VmbErrorIncomplete: If at least one, but not all bytes have been read. See overload ReadMemory(

const VmbUint64_t&, UcharVector&, VmbUint32_t&).

14

Function reference

ReadMemory()
Same as ReadMemory(const Uint64Vector&, UcharVector&), but returns the number of bytes
successfully read in case of an error VmbErrorIncomplete.

 Type Name Description

in const VmbUint64_t& address The address to read from

out UcharVector& buffer The returned data as vector

out VmbUint32_t& sizeComplete The number of successfully read bytes

• VmbErrorSuccess: If all requested bytes have been read
• VmbErrorBadParameter: Vector "buffer" is empty.
• VmbErrorIncomplete: If at least one, but not all bytes have been read.

WriteMemory()
Writes a block of memory. The number of bytes to write is determined by the size of the provided buffer.

 Type Name Description

in const VmbUint64_t& address The address to write to

in const UcharVector& buffer The data to write as vector

• VmbErrorSuccess: If all requested bytes have been written
• VmbErrorBadParameter: Vector "buffer" is empty.
• VmbErrorIncomplete: If at least one, but not all bytes have been written. See overload

WriteMemory(const VmbUint64_t&, const UcharVector&, VmbUint32_t&).

WriteMemory()
Same as WriteMemory(const Uint64Vector&, const UcharVector&), but returns the number of bytes
successfully written in case of an error VmbErrorIncomplete.

15

Function reference

 Type Name Description

in const VmbUint64_t& address The address to write to

in const UcharVector& buffer The data to write as vector

out VmbUint32_t& sizeComplete The number of successfully written bytes

• VmbErrorSuccess: If all requested bytes have been written
• VmbErrorBadParameter: Vector "buffer" is empty.
• VmbErrorIncomplete: If at least one, but not all bytes have been written.

16

Function reference

IInterfaceListObserver
InterfaceListChanged()
The event handler function that gets called whenever an IInterfaceListObserver is triggered.

 Type Name Description

out InterfacePtr pInterface The interface that triggered the event

out UpdateTriggerType reason The reason why the callback routine was triggered

IInterfaceListObserver destructor
Destroys an instance of class IInterfaceListObserver

17

Function reference

ICameraListObserver
CameraListChanged()
The event handler function that gets called whenever an ICameraListObserver is triggered. This occurs
most likely when a camera was plugged in or out.

 Type Name Description

out CameraPtr pCam The camera that triggered the event

out UpdateTriggerType reason The reason why the callback routine was triggered (e.g., a
new camera was plugged in)

ICameraListObserver destructor
Destroys an instance of class ICameraListObserver

18

Function reference

IFrameObserver
FrameReceived()
The event handler function that gets called whenever a new frame is received

Type Name Description

in const FramePtr pFrame The frame that was received

IFrameObserver destructor
Destroys aninstance of class IFrameObserver

19

Function reference

IFeatureObserver
FeatureChanged()
The event handler function that gets called whenever a feature has changed

Type Name Description

in const FeaturePtr& pFeature The frame that has changed

IFeatureObserver destructor
Destroys an instance of class IFeatureObserver

20

Function reference

ICameraFactory
CreateCamera()
Factory method to create a camera that extends the Camera class

 Type Name Description

in const char* pCameraID The ID of the camera

in const char* pCameraName The name of the camera

in const char* pCameraModel The model name of the camera

in const char* pCameraSerialNumber The serial number of the camera

in const char* pInterfaceID The ID of the interface the camera is con-
nected to

in VmbInterfaceType interfaceType The type of the interface the camera is con-
nected to

in const char* pInterfaceName The name of the interface

in const char* pInterfaceSerialNumber The serial number of the interface

in VmbAccessModeType interfacePermittedAccess The access privileges for the interface

The ID of the camera may be, among others, one of the following:
"169.254.12.13", "000f31000001", a plain serial number: "1234567890", or the
device ID of the underlying transport layer.

ICameraFactory destructor
Destroys an instance of class Camera

21

Function reference

in VmbAccessMode_t accessMode Access mode determines the level of control you have on
the camera

Description Name Type

Camera
Camera constructor
Creates an instance of class Camera

 Type Name Description

in const char* pID The ID of the camera

in const char* pName The name of the camera

in const char* pModel The model name of the camera

in const char* pSerialNumber The serial number of the camera

in const char* pInterfaceID The ID of the interface the camera is connected to

in VmbInterfaceType interfaceType The type of the interface the camera is connected to

The ID of the camera may be, among others, one of the following:
"169.254.12.13", "000f31000001", a plain serial number: "1234567890", or the
device ID of the underlying transport layer.

Camera destructor
Destroys an instance of class Camera

Destroying a camera implicitly closes it beforehand.

Open()
Opens the specified camera.

22

Function reference

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorNotFound: The designated camera cannot be found
• VmbErrorInvalidAccess: Operation is invalid with the current access mode

A camera may be opened in a specific access mode. This mode determines the
level of control you have on a camera.

Close()
Closes the specified camera.

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command

Depending on the access mode this camera was opened in, events are killed,
callbacks are unregistered, the frame queue is cleared, and camera control is
released.

GetID()
Gets the ID of a camera.

Type Name Description

out std::string& cameraID The ID of the camera

• VmbErrorSuccess: If no error

GetName()
Gets the name of a camera.

Type Name Description

out std::string& name The name of the camera

• VmbErrorSuccess: If no error

23

Function reference

out std::string& serialNumber The serial number of the camera

Description Name Type

out std::string& interfaceID The interface ID of the camera

Description Name Type

out VmbInterfaceType& interfaceType The interface type of the camera

Description Name Type

GetModel()
Gets the model name of a camera.

Type Name Description

out std::string& model The model name of the camera

• VmbErrorSuccess: If no error

GetSerialNumber()
Gets the serial number of a camera.

• VmbErrorSuccess: If no error

GetInterfaceID()
Gets the interface ID of a camera.

• VmbErrorSuccess: If no error

GetInterfaceType()
Gets the type of the interface the camera is connected to. And therefore the type of the camera itself.

• VmbErrorSuccess: If no error

24

Function reference

out VmbAccessModeType& permittedAccess The possible access modes of the camera

Description Name Type

GetPermittedAccess()
Gets the access modes of a camera.

• VmbErrorSuccess: If no error

ReadRegisters()
Reads one or more registers consecutively. The number of registers to read is determined by the
number of provided addresses.

 Type Name Description

in const Uint64Vector& addresses A list of register addresses

out Uint64Vector& buffer The returned data as vector

• VmbErrorSuccess: If all requested registers have been read
• VmbErrorBadParameter: Vectors "addresses" and/or "buffer" are empty.
• VmbErrorIncomplete: If at least one, but not all registers have been read. See overload

ReadRegisters(const Uint64Vector&, Uint64Vector&, VmbUint32_t&).

ReadRegisters()
Same as ReadRegisters(const Uint64Vector&, Uint64Vector&), but returns the number of successful
read operations in case of an error.

 Type Name Description

in const Uint64Vector& addresses A list of register addresses

out Uint64Vector& buffer The returned data as vector

out VmbUint32_t& completedReads The number of successfully read registers

• VmbErrorSuccess: If all requested registers have been read
• VmbErrorBadParameter: Vectors "addresses" and/or "buffer" are empty.
• VmbErrorIncomplete: If at least one, but not all registers have been read.

25

Function reference

WriteRegisters()
Writes one or more registers consecutively. The number of registers to write is determined by the
number of provided addresses.

 Type Name Description

in const Uint64Vector& addresses A list of register addresses

in const Uint64Vector& buffer The data to write as vector

• VmbErrorSuccess: If all requested registers have been written
• VmbErrorBadParameter: Vectors "addresses" and/or "buffer" are empty.
• VmbErrorIncomplete: If at least one, but not all registers have been written. See overload

WriteRegisters(const Uint64Vector&, const Uint64Vector&, VmbUint32_t&).

WriteRegisters()
Same as WriteRegisters(const Uint64Vector&, const Uint64Vector&), but returns the number of
successful write operations in case of an error.

 Type Name Description

in const Uint64Vector& addresses A list of register addresses

in const Uint64Vector& buffer The data to write as vector

out VmbUint32_t& completedWrites The number of successfully read registers

• VmbErrorSuccess: If all requested registers have been written
• VmbErrorBadParameter: Vectors "addresses" and/or "buffer" are empty.
• VmbErrorIncomplete: If at least one, but not all registers have been written.

ReadMemory()
Reads a block of memory. The number of bytes to read is determined by the size of the provided buffer.

 Type Name Description

in const VmbUint64_t& address The address to read from

out UcharVector& buffer The returned data as vector

26

Function reference

• VmbErrorSuccess: If all requested bytes have been read
• VmbErrorBadParameter: Vector "buffer" is empty.
• VmbErrorIncomplete: If at least one, but not all bytes have been read. See overload ReadMemory(

const VmbUint64_t&, UcharVector&, VmbUint32_t&).

ReadMemory()
Same as ReadMemory(const Uint64Vector&, UcharVector&), but returns the number of bytes
successfully read in case of an error VmbErrorIncomplete.

 Type Name Description

in const VmbUint64_t& address The address to read from

out UcharVector& buffer The returned data as vector

out VmbUint32_t& completeReads The number of successfully read bytes

• VmbErrorSuccess: If all requested bytes have been read
• VmbErrorBadParameter: Vector "buffer" is empty.
• VmbErrorIncomplete: If at least one, but not all bytes have been read.

WriteMemory()
Writes a block of memory. The number of bytes to write is determined by the size of the provided buffer.

 Type Name Description

in const VmbUint64_t& address The address to write to

in const UcharVector& buffer The data to write as vector

• VmbErrorSuccess: If all requested bytes have been written
• VmbErrorBadParameter: Vector "buffer" is empty.
• VmbErrorIncomplete: If at least one, but not all bytes have been written. See overload

WriteMemory(const VmbUint64_t&, const UcharVector&, VmbUint32_t&).

WriteMemory()
Same as WriteMemory(const Uint64Vector&, const UcharVector&), but returns the number of bytes
successfully written in case of an error VmbErrorIncomplete.

27

Function reference

 Type Name Description

in const VmbUint64_t& address The address to write to

in const UcharVector& buffer The data to write as vector

out VmbUint32_t& sizeComplete The number of successfully written bytes

• VmbErrorSuccess: If all requested bytes have been written
• VmbErrorBadParameter: Vector "buffer" is empty.
• VmbErrorIncomplete: If at least one, but not all bytes have been written.

AcquireSingleImage()
Gets one image synchronously.

Type Name Description

out FramePtr& pFrame The frame that gets filled

in VmbUint32_t timeout The time to wait until the frame got filled

in FrameAllocationMode allocationMode The frame allocation mode

• VmbErrorSuccess: If no error
• VmbErrorBadParameter: "pFrame" is NULL.
• VmbErrorTimeout: Call timed out

AcquireMultipleImages()
Gets a certain number of images synchronously.

Type Name Description

out FramePtrVector& frames The frames that get filled

in VmbUint32_t timeout The time to wait until one frame got filled

in FrameAllocationMode allocationMode The frame allocation mode

28

Function reference

The size of the frame vector determines the number of frames to use.

• VmbErrorSuccess: If no error
• VmbErrorInternalFault: Filling all the frames was not successful.
• VmbErrorBadParameter: Vector "frames" is empty.

AcquireMultipleImages()
Same as AcquireMultipleImages(FramePtrVector&, VmbUint32_t), but returns the number of frames
that were filled completely.

 Type Name Description

out FramePtrVector& frames The frames that get filled

in VmbUint32_t timeout The time to wait until one frame got filled

out VmbUint32_t& numFramesCompleted The number of frames that were filled
completely

in FrameAllocationMode allocationMode The frame allocation mode

The size of the frame vector determines the number of frames to use. On
return, "numFramesCompleted" holds the number of frames actually filled.

• VmbErrorSuccess: If no error
• VmbErrorBadParameter: Vector "frames" is empty.

StartContinuousImageAcquisition()
Starts streaming and allocates the needed frames

 Type Name Description

in int bufferCount The number of frames to use

out const IFrameObserverPtr& pObserver The observer to use on arrival of new
frames

in FrameAllocationMode allocationMode The frame allocation mode

29

Function reference

• VmbErrorSuccess: If no error
• VmbErrorDeviceNotOpen: The camera has not been opened before
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode

StopContinuousImageAcquisition()
Stops streaming and deallocates the needed frames

AnnounceFrame()
Announces a frame to the API that may be queued for frame capturing later.

Type Name Description

in const FramePtr& pFrame Shared pointer to a frame to announce

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorBadParameter: "pFrame" is NULL.
• VmbErrorStructSize: The given struct size is not valid for this version of the API

Allows some preparation for frames like DMA preparation depending on the
transport layer. The order in which the frames are announced is not taken in
consideration by the API.

RevokeFrame()
Revoke a frame from the API.

Type Name Description

in const FramePtr& pFrame Shared pointer to a frame that is to be removed from the list of
announced frames

• VmbErrorSuccess: If no error

30

Function reference

• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given frame pointer is not valid
• VmbErrorBadParameter: "pFrame" is NULL.
• VmbErrorStructSize: The given struct size is not valid for this version of the API

The referenced frame is removed from the pool of frames for capturing images.

RevokeAllFrames()
Revoke all frames assigned to this certain camera.

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid

QueueFrame()
Queues a frame that may be filled during frame capturing.

Type Name Description

in const FramePtr& pFrame A shared pointer to a frame

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given frame is not valid
• VmbErrorBadParameter: "pFrame" is NULL.
• VmbErrorStructSize: The given struct size is not valid for this version of the API
• VmbErrorInvalidCall: StopContinuousImageAcquisition is currently running in another thread

The given frame is put into a queue that will be filled sequentially. The order in
which the frames are filled is determined by the order in which they are
queued. If the frame was announced with AnnounceFrame() before, the
application has to ensure that the frame is also revoked by calling
RevokeFrame() or RevokeAll() when cleaning up.

31

Function reference

FlushQueue()
Flushes the capture queue.

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid

All the currently queued frames will be returned to the user, leaving no frames
in the input queue. After this call, no frame notification will occur until frames
are queued again.

StartCapture()
Prepare the APIor incoming frames from this camera.

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorDeviceNotOpen: Camera was not opened for usage
• VmbErrorInvalidAccess: Operation is invalid with the current access mode

EndCapture()
Stop the API from being able to receive frames from this camera.

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid

Consequences of VmbCaptureEnd(): - The frame queue is flushed - The frame
callback will not be called any more

SaveCameraSettings()
Saves the current camera setup to an XML file

32

Function reference

 Type Name Description

in std::string pStrFileName xml file name

in VmbFeaturePersistSettings_t* pSettings pointer to settings struct

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInternalFault: When something unexpected happens in VimbaC function
• VmbErrorOther: Every other failure in load/save settings implementation class

LoadCameraSettings()
Loads the current camera setup from an XML file into the camera

 Type Name Description

in std::string pStrFileName xml file name

in VmbFeaturePersistSettings_t* pSettings pointer to settings struct

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInternalFault: When something unexpected happens in VimbaC function
• VmbErrorOther: Every other failure in load/save settings implementation class

LoadSaveSettingsSetup()
Sets Load/Save settings behaviour (alternative to settings struct)

Type Name Description

in VmbFeaturePersist_t persistType determines which feature shall be considered during
load/save settings

in VmbUint32_t maxIterations determines how many 'tries' during loading feature
values shall be performed

in VmbUint32_t loggingLevel determines level of detail for load/save settings log-
ging

33

Function reference

in const IFrameObserverPtr& pObserver An object that implements the IObserver inter-
face

Description Name Type

Frame
Frame constructor
Creates an instance of class Frame of a certain size

 Type Name Description

in VmbInt64_t bufferSize The size of the underlying buffer

in FrameAllocationMode allocationMode Indicates if announce frame or alloc and announce
frame is used

Frame constructor
Creates an instance of class Frame with the given user buffer of the given size

 Type Name Description

in VmbUchar_t* pBuffer A pointer to an allocated buffer

in VmbInt64_t bufferSize The size of the underlying buffer

Frame destructor
Destroys an instance of class Frame

RegisterObserver()
Registers an observer that will be called whenever a new frame arrives

• VmbErrorSuccess: If no error
• VmbErrorBadParameter: "pObserver" is NULL.

34

Function reference

out AncillaryDataPtr& pAncillaryData The wrapped chunk data

Description Name Type

out ConstAncillaryDataPtr& pAncillaryData The wrapped chunk data

Description Name Type

• VmbErrorResources: The observer was in use

As new frames arrive, the observer's FrameReceived method will be called.
Only one observer can be registered.

UnregisterObserver()
Unregisters the observer that was called whenever a new frame arrived

GetAncillaryData()
Returns the part of a frame that describes the chunk data as an object

• VmbErrorSuccess: If no error
• VmbErrorNotFound: No chunk data present

GetAncillaryData()
Returns the part of a frame that describes the chunk data as an object

• VmbErrorSuccess: If no error
• VmbErrorNotFound: No chunk data present

GetBuffer()
Returns the complete buffer including image and chunk data

35

Function reference

Type Name Description

out VmbUchar_t* pBuffer A pointer to the buffer

• VmbErrorSuccess: If no error

GetBuffer()
Returns the complete buffer including image and chunk data

Type Name Description

out const VmbUchar_t* pBuffer A pointer to the buffer

• VmbErrorSuccess: If no error

GetImage()
Returns only the image data

Type Name Description

out VmbUchar_t* pBuffer A pointer to the buffer

• VmbErrorSuccess: If no error

GetImage()
Returns only the image data

Type Name Description

out const VmbUchar_t* pBuffer A pointer to the buffer

• VmbErrorSuccess: If no error

36

Function reference

out VmbFrameStatusType& status The receive status

Name Description Type

GetReceiveStatus()
Returns the receive status of a frame

• VmbErrorSuccess: If no error

GetImageSize()
Returns the memory size of the image

Type Name Description

out VmbUint32_t& imageSize The size in bytes

• VmbErrorSuccess: If no error

GetAncillarySize()
Returns memory size of the chunk data

Type Name Description

out VmbUint32_t& ancillarySize The size in bytes

• VmbErrorSuccess: If no error

GetBufferSize()
Returns the memory size of the frame buffer holding both the image data and the ancillary data

Type Name Description

out VmbUint32_t& bufferSize The size in bytes

• VmbErrorSuccess: If no error

37

Function reference

out VmbPixelFormatType& pixelFormat The GenICam pixel format

Description Name Type

GetPixelFormat()
Returns the GenICam pixel format

• VmbErrorSuccess: If no error

GetWidth()
Returns the width of the image

Type Name Description

out VmbUint32_t& width The width in pixels

• VmbErrorSuccess: If no error

GetHeight()
Returns the height of the image

Type Name Description

out VmbUint32_t& height The height in pixels

• VmbErrorSuccess: If no error

GetOffsetX()
Returns the x offset of the image

Type Name Description

out VmbUint32_t& offsetX The x offset in pixels

• VmbErrorSuccess: If no error

38

Function reference

GetOffsetY()
Returns the y offset of the image

Type Name Description

out VmbUint32_t& offsetY The y offset in pixels

• VmbErrorSuccess: If no error

GetFrameID()
Returns the frame ID

Type Name Description

out VmbUint64_t& frameID The frame ID

• VmbErrorSuccess: If no error

GetTimeStamp()
Returns the time stamp

Type Name Description

out VmbUint64_t& timestamp The time stamp

• VmbErrorSuccess: If no error

39

Function reference

Feature
GetValue()
Queries the value of a feature of type VmbInt64

Type Name Description

out VmbInt64_t& value The feature's value

GetValue()
Queries the value of a feature of type double

Type Name Description

out double& value The feature's value

GetValue()
Queries the value of a feature of type string

Type Name Description

out std::string& value The feature's value

When an empty string is returned, its size indicates the maximum length

GetValue()
Queries the value of a feature of type bool

Type Name Description

out bool& value The feature's value

40

Function reference

out StringVector& values The feature's values

Name Description Type

GetValue()
Queries the value of a feature of type UcharVector

Type Name Description

out UcharVector& value The feature's value

GetValue()
Queries the value of a feature of type const UcharVector

 Type Name Description

out UcharVector& value The feature's value

out VmbUint32_t& sizeFilled The number of actually received values

GetValues()
Queries the values of a feature of type Int64Vector

Type Name Description

out Int64Vector& values The feature's values

GetValues()
Queries the values of a feature of type StringVector

41

Function reference

out EnumEntryVector& entries An enum feature's enum entries

Name Description Type

GetEntry()
Queries a single enum entry of a feature of type Enumeration

 Type Name Description

out EnumEntry& entry An enum feature's enum entry

in const char* pEntryName The name of the enum entry

GetEntries()
Queries all enum entries of a feature of type Enumeration

GetRange()
Queries the range of a feature of type double

 Type Name Description

out double& minimum The feature's min value

out double& maximum The feature's max value

GetRange()
Queries the range of a feature of type VmbInt64

 Type Name Description

out VmbInt64_t& minimum The feature's min value

out VmbInt64_t& maximum The feature's max value

42

Function reference

SetValue()
Sets the value of a feature of type VmbInt32

Type Name Description

in const VmbInt32_t& value The feature's value

SetValue()
Sets the value of a feature of type VmbInt64

Type Name Description

in const VmbInt64_t& value The feature's value

SetValue()
Sets the value of a feature of type double

Type Name Description

in const double& value The feature's value

SetValue()
Sets the value of a feature of type char*

Type Name Description

in const char* pValue The feature's value

SetValue()
Sets the value of a feature of type bool

43

Function reference

out VmbBool_t& incrementsupported The feature's increment support state

Description Name Type

out VmbInt64_t& increment The feature's increment

Description Name Type

out double& increment The feature's increment

Description Name Type

Type Name Description

in bool value The feature's value

SetValue()
Sets the value of a feature of type UcharVector

Type Name Description

in const UcharVector& value The feature's value

HasIncrement()
Gets the support state increment of a feature

GetIncrement()
Gets the increment of a feature of type VmbInt64

GetIncrement()
Gets the increment of a feature of type double

44

Function reference

IsValueAvailable()
Indicates whether an existing enumeration value is currently available. An enumeration value might not
be selectable due to the camera's current configuration.

 Type Name Description

in const char* pValue The enumeration value as string

out bool& available True when the given value is available

• VmbErrorSuccess: If no error
• VmbErrorInvalidValue: If the given value is not a valid enumeration value for this enum
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The feature is not an enumeration

IsValueAvailable()
Indicates whether an existing enumeration value is currently available. An enumeration value might not
be selectable due to the camera's current configuration.

 Type Name Description

in const VmbInt64_t value The enumeration value as int

out bool& available True when the given value is available

• VmbErrorSuccess: If no error
• VmbErrorInvalidValue: If the given value is not a valid enumeration value for this enum
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The feature is not an enumeration

RunCommand()
Executes a feature of type Command

45

Function reference

out std::string& displayName The feature's display name

Description Name Type

out VmbFeatureDataType& dataType The feature's type

Description Name Type

IsCommandDone()
Indicates whether the execution of a feature of type Command has finished

Type Name Description

out bool& isDone True when execution has finished

GetName()
Queries a feature's name

Type Name Description

out std::string& name The feature's name

GetDisplayName()
Queries a feature's display name

GetDataType()
Queries a feature's type

GetFlags()
Queries a feature's access status

46

Function reference

out std::string& category The feature's position in the feature tree

Description Name Type

out VmbUint32_t& pollingTime The interval to poll the feature

Description Name Type

out std::string& representation The feature's representation

Description Name Type

GetCategory()
Queries a feature's category in the feature tress

GetPollingTime()
Queries a feature's polling time

GetUnit()
Queries a feature's unit

Type Name Description

out std::string& unit The feature's unit

GetRepresentation()
Queries a feature's representation

out VmbFeatureFlagsType& flags The feature's access status

Name Description Type

47

Function reference

out VmbFeatureVisibilityType& visibility The feature's visibility

Description Name Type

out std::string& description The feature'sdescription

Description Name Type

out std::string& sFNCNamespace The feature's SFNC namespace

Description Name Type

GetVisibility()
Queries a feature's visibility

GetToolTip()
Queries a feature's tool tip to display in the GUI

Type Name Description

out std::string& toolTip The feature's tool tip

GetDescription()
Queries a feature's description

GetSFNCNamespace()
Queries a feature's Standard Feature Naming Convention namespace

GetAffectedFeatures()
Queries the feature's that are dependent from the current feature

48

Function reference

out FeaturePtrVector& selectedFeatures The selected features

Description Name Type

GetSelectedFeatures()
Gets the features that get selected by the current feature

IsReadable()
Queries the read access status of a feature

Type Name Description

out bool& isReadable True when feature can be read

IsWritable()
Queries the write access status of a feature

Type Name Description

out bool& isWritable True when feature can be written

IsStreamable()
Queries whether a feature's value can be transferred as a stream

Type Name Description

out bool& isStreamable True when streamable

out FeaturePtrVector& affectedFeatures The features that get invalidated through the cur-
rent feature

Description Name Type

49

Function reference

out const IFeatureObserverPtr& pObserver The observer to be registered

Description Name Type

out const IFeatureObserverPtr& pObserver The observer to be unregistered

Description Name Type

RegisterObserver()
Registers an observer that notifies the application whenever a features value changes

• VmbErrorSuccess: If no error
• VmbErrorBadParameter: "pObserver" is NULL.

UnregisterObserver()
Unregisters an observer

• VmbErrorSuccess: If no error
• VmbErrorBadParameter: "pObserver" is NULL.

50

Function reference

EnumEntry
EnumEntry constructor
Creates an instance of class EnumEntry

 Type Name Description

in const char* pName The name of the enum

in const char* pDisplayName The declarative name of the enum

in const char* pDescription The description of the enum

in const char* pTooltip A tooltip that can be used by a GUI

in const char* pSNFCNamespace The SFNC namespace of the enum

in VmbFeatureVisibility_t visibility The visibility of the enum

in VmbInt64_t value The integer value of the enum

EnumEntry constructor
Creates an instance of class EnumEntry

EnumEntry copy constructor
Creates a copy of class EnumEntry

EnumEntry assignment operator
assigns EnumEntry to existing instance

EnumEntry destructor
Destroys an instance of class EnumEntry

51

Function reference

out std::string& displayName The display name of the enumeration

Description Name Type

out std::string& description The description of the enumeration

Description Name Type

GetName()
Gets the name of an enumeration

Type Name Description

out std::string& name The name of the enumeration

GetDisplayName()
Gets a more declarative name of an enumeration

GetDescription()
Gets the description of an enumeration

GetTooltip()
Gets a tooltip that can be used as pop up help in a GUI

Type Name Description

out std::string& tooltip The tooltip as string

GetValue()
Gets the integer value of an enumeration

52

Function reference

out VmbFeatureVisibilityType& value The visibility of the enumeration

Name Description Type

out std::string& sFNCNamespace The feature's SFNC namespace

Description Name Type

Type Name Description

out VmbInt64_t& value The integer value of the enumeration

GetVisibility()
Gets the visibility of an enumeration

GetSNFCNamespace()
Gets the standard feature naming convention namespace of the enumeration

53

Function reference

AncillaryData
Open()
Opens the ancillary data to allow access to the elements of the ancillary data via feature access.

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command

This function can only succeed if the given frame has been filled by the API.

Close()
Closes the ancillary data inside a frame.

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid

After reading the ancillary data and before re-queuing the frame, ancillary data
must be closed.

GetBuffer()
Returns the underlying buffer

Type Name Description

out VmbUchar_t*& pBuffer A pointer to the buffer

• VmbErrorSuccess: If no error

GetBuffer()
Returns the underlying buffer

54

Function reference

Type Name Description

out const VmbUchar_t*& pBuffer A pointer to the buffer

• VmbErrorSuccess: If no error

GetSize()
Returns the size of the underlying buffer

Type Name Description

out VmbUint32_t& size The size of the buffer

• VmbErrorSuccess: If no error

55

	VimbaSystem
	GetInstance()
	QueryVersion()
	Startup()
	Shutdown()
	GetInterfaces()
	GetInterfaceByID()
	OpenInterfaceByID()
	GetCameras()
	GetCameraByID()
	OpenCameraByID()
	RegisterCameraListObserver()
	UnregisterCameraListObserver()
	RegisterInterfaceListObserver()
	UnregisterInterfaceListObserver()
	RegisterCameraFactory()
	UnregisterCameraFactory()

	Interface
	Open()
	Close()
	GetID()
	GetType()
	GetName()
	GetSerialNumber()
	GetPermittedAccess()

	FeatureContainer
	FeatureContainer constructor
	FeatureContainer destructor
	GetFeatureByName()
	GetFeatures()

	IRegisterDevice
	ReadRegisters()
	ReadRegisters()
	WriteRegisters()
	WriteRegisters()
	ReadMemory()
	ReadMemory()
	WriteMemory()
	WriteMemory()

	IInterfaceListObserver
	InterfaceListChanged()
	IInterfaceListObserver destructor

	ICameraListObserver
	CameraListChanged()
	ICameraListObserver destructor

	IFrameObserver
	FrameReceived()
	IFrameObserver destructor

	IFeatureObserver
	FeatureChanged()
	IFeatureObserver destructor

	ICameraFactory
	CreateCamera()
	ICameraFactory destructor

	Camera
	Camera constructor
	Camera destructor
	Open()
	Close()
	GetID()
	GetName()
	GetModel()
	GetSerialNumber()
	GetInterfaceID()
	GetInterfaceType()
	GetPermittedAccess()
	ReadRegisters()
	ReadRegisters()
	WriteRegisters()
	WriteRegisters()
	ReadMemory()
	ReadMemory()
	WriteMemory()
	WriteMemory()
	AcquireSingleImage()
	AcquireMultipleImages()
	AcquireMultipleImages()
	StartContinuousImageAcquisition()
	StopContinuousImageAcquisition()
	AnnounceFrame()
	RevokeFrame()
	RevokeAllFrames()
	QueueFrame()
	FlushQueue()
	StartCapture()
	EndCapture()
	SaveCameraSettings()
	LoadCameraSettings()
	LoadSaveSettingsSetup()

	Frame
	Frame constructor
	Frame constructor
	Frame destructor
	RegisterObserver()
	UnregisterObserver()
	GetAncillaryData()
	GetAncillaryData()
	GetBuﬀer()
	GetBuﬀer()
	GetImage()
	GetImage()
	GetReceiveStatus()
	GetImageSize()
	GetAncillarySize()
	GetBuﬀerSize()
	GetPixelFormat()
	GetWidth()
	GetHeight()
	GetOﬀsetX()
	GetOﬀsetY()
	GetFrameID()
	GetTimeStamp()

	Feature
	GetValue()
	GetValue()
	GetValue()
	GetValue()
	GetValue()
	GetValue()
	GetValues()
	GetValues()
	GetEntry()
	GetEntries()
	GetRange()
	GetRange()
	SetValue()
	SetValue()
	SetValue()
	SetValue()
	SetValue()
	SetValue()
	HasIncrement()
	GetIncrement()
	GetIncrement()
	IsValueAvailable()
	IsValueAvailable()
	RunCommand()
	IsCommandDone()
	GetName()
	GetDisplayName()
	GetDataType()
	GetFlags()
	GetCategory()
	GetPollingTime()
	GetUnit()
	GetRepresentation()
	GetVisibility()
	GetToolTip()
	GetDescription()
	GetSFNCNamespace()
	GetAﬀectedFeatures()
	GetSelectedFeatures()
	IsReadable()
	IsWritable()
	IsStreamable()
	RegisterObserver()
	UnregisterObserver()

	EnumEntry
	EnumEntry constructor
	EnumEntry constructor
	EnumEntry copy constructor
	EnumEntry assignment operator
	EnumEntry destructor
	GetName()
	GetDisplayName()
	GetDescription()
	GetTooltip()
	GetValue()
	GetVisibility()
	GetSNFCNamespace()

	AncillaryData
	Open()
	Close()
	GetBuﬀer()
	GetBuﬀer()
	GetSize()

