

Vimba

Vimba C Function
Reference

1.9.1

Function reference

2

In this chapter, you can find a complete list of all methods that are described in VimbaC.h.

All function and type definitions are designed to be platform-independent and portable from other
languages.

General conventions:

• Method names are composed in the following manner:

– Vmb"Action". Example: VmbStartup()
– Vmb"Entity""Action". Example: VmbInterfaceOpen()
– Vmb"ActionTarget""Action". Example: VmbFeaturesList()
– Vmb"Entity""SubEntity""Action". Example: VmbFeatureCommandRun()

• Methods dealing with features, memory, or registers accept a handle from the following entity list
as first parameter: System, Camera, Interface, and AncillaryData. All other methods taking handles
accept only a specific handle.

• Strings (generally declared as "const char *") are assumed to have a trailing 0 character.
• All pointer parameters should of course be valid, except if stated otherwise.
• To ensure compatibility with older programs linked against a former version of the API, all struct*

parameters have an accompanying sizeofstruct parameter.
• Functions returning lists are usually called twice: once with a zero buffer to get the length of the

list, and then again with a buffer of the correct length.

Methods in this chapter are always described in the same way:

• The caption states the name of the function without parameters
• The first item is a brief description
• The parameters of the function are listed in a table (with type, name, and description)
• The return values are listed
• Finally, a more detailed description about the function is given

Function reference

3

Callbacks
VmbInvalidationCallback
Invalidation Callback type for a function that gets called in a separate thread and has been registered
with VmbFeatureInvalidationRegister()

 Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

in void* pUserContext Pointer to the user context, see VmbFeatureInvalida-
tionRegister

While the callback is run, all feature data is atomic. After the callback finishes,
the feature data might be updated with new values.

Do not spend too much time in this thread; it will prevent the feature values
from being updated from any other thread or the lower-level drivers.

VmbFrameCallback
Frame Callback type for a function that gets called in a separate thread if a frame has been queued with
VmbCaptureFrameQueue()

 Type Name Description

in const VmbHandle_t cameraHandle Handle of the camera

out VmbFrame_t* pFrame Frame completed

Function reference

4

API Version
VmbVersionQuery()
Retrieve the version number of VimbaC.

Type Name Description

out VmbVersionInfo_t* pVersionInfo Pointer to the struct where version information is
copied

in VmbUint32_t sizeofVersionInfo Size of structure in bytes

• VmbErrorSuccess: If no error
• VmbErrorStructSize: The given struct size is not valid for this version of the API
• VmbErrorBadParameter: If "pVersionInfo" is NULL.

This function can be called at anytime, even before the API is initialized. All
other version numbers may be queried via feature access.

Function reference

5

API Initialization
VmbStartup()
Initialize the VimbaC API.

• VmbErrorSuccess: If no error
• VmbErrorInternalFault: An internal fault occurred

On successful return, the API is initialized; this is a necessary call.

This method must be called before any VimbaC function other than
VmbVersionQuery() is run.

VmbShutdown()
Perform a shutdown on the API.

This will free some resources and deallocate all physical resources if applicable.

Function reference

6

Camera Enumeration & Information
VmbCamerasList()
Retrieve a list of all cameras.

 Type Name Description

out VmbCameraInfo_t* pCameraInfo Array of VmbCameraInfo_t, allocated by the caller.
The camera list is copied here. May be NULL if
pNumFound is used for size query.

in VmbUint32_t listLength Number of VmbCameraInfo_t elements provided

out VmbUint32_t* pNumFound Number of VmbCameraInfo_t elements found.

in VmbUint32_t sizeofCameraInfo Size of the structure (if pCameraInfo == NULL this
parameter is ignored)

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorStructSize: The given struct size is not valid for this API version
• VmbErrorMoreData: The given list length was insufficient to hold all available entries
• VmbErrorBadParameter: If "pNumFound" was NULL

Camera detection is started with the registration of the
"DiscoveryCameraEvent" event or the first call of VmbCamerasList(), which may
be delayed if no "DiscoveryCameraEvent" event is registered (see examples).
VmbCamerasList() is usually called twice: once with an empty array to query the
list length, and then again with an array of the correct length. If camera lists
change between the calls, pNumFound may deviate from the query return.

VmbCameraInfoQuery()
Retrieve information on a camera given by an ID.

Function reference

7

 Type Name Description

in const char* idString ID of the camera

out VmbCameraInfo_t* pInfo Structure where information will be copied. May be
NULL.

in VmbUint32_t sizeofCameraInfo Size of the structure

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorNotFound: The designated camera cannot be found
• VmbErrorStructSize: The given struct size is not valid for this API version
• VmbErrorBadParameter: If "idString" was NULL

May be called if a camera has not been opened by the application yet. Examples
for "idString": "DEV_81237473991" for an ID given by a transport layer,
"169.254.12.13" for an IP address, "000F314C4BE5" for a MAC address or
"DEV_1234567890" for an ID as reported by Vimba

VmbCameraOpen()
Open the specified camera.

 Type Name Description

in const char* idString ID of the camera

in VmbAccessMode_t accessMode Determines the level of control you have on the cam-
era

out VmbHandle_t* pCameraHandle A camera handle

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorNotFound: The designated camera cannot be found
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorInvalidCall: If called from frame callback
• VmbErrorBadParameter: If "idString" or "pCameraHandle" is NULL

Function reference

8

A camera may be opened in a specific access mode, which determines the level
of control you have on a camera. Examples for "idString": "DEV_81237473991"
for an ID given by a transport layer, "169.254.12.13" for an IP address,
"000F314C4BE5" for a MAC address or "DEV_1234567890" for an ID as
reported by Vimba

VmbCameraClose()
Close the specified camera.

Type Name Description

in const VmbHandle_t cameraHandle A valid camera handle

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorInvalidCall: If called from frame callback

Depending on the access mode this camera was opened with, events are killed,
callbacks are unregistered, and camera control is released.

Function reference

9

Features
VmbFeaturesList()
List all the features for this entity.

 Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

out VmbFeatureInfo_t* pFeatureInfoList An array of VmbFeatureInfo_t to be filled by the
API. May be NULL if pNumFund is used for size
query.

in VmbUint32_t listLength Number of VmbFeatureInfo_t elements provided

out VmbUint32_t* pNumFound Number of VmbFeatureInfo_t elements found.
May be NULL if pFeatureInfoList is not NULL.

in VmbUint32_t sizeofFeatureInfo Size of a VmbFeatureInfo_t entry

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorStructSize: The given struct size of VmbFeatureInfo_t is not valid for this version of the

API
• VmbErrorMoreData: The given list length was insufficient to hold all available entries

This method lists all implemented features, whether they are currently available
or not. The list of features does not change as long as the camera/interface is
connected. "pNumFound" returns the number of VmbFeatureInfo elements.
This function is usually called twice: once with an empty list to query the length
of the list, and then again with an list of the correct length.

VmbFeatureInfoQuery()
Query information about the constant properties of a feature.

Function reference

10

 Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

out VmbFeatureInfo_t* pFeatureInfo The feature info to query

in VmbUint32_t sizeofFeatureInfo Size of the structure

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorStructSize: The given struct size is not valid for this version of the API

Users provide a pointer to VmbFeatureInfo_t, which is then set to the internal
representation.

VmbFeatureListAffected()
List all the features that might be affected by changes to this feature.

 Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

out VmbFeatureInfo_t* pFeatureInfoList An array of VmbFeatureInfo_t to be filled by the
API. May be NULL if pNumFound is used for size
query.

in VmbUint32_t listLength Number of VmbFeatureInfo_t elements provided

out VmbUint32_t* pNumFound Number of VmbFeatureInfo_t elements found.
May be NULL is pFeatureInfoList is not NULL.

in VmbUint32_t sizeofFeatureInfo Size of a VmbFeatureInfo_t entry

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command

Function reference

11

• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorStructSize: The given struct size of VmbFeatureInfo_t is not valid for this version of the

API
• VmbErrorMoreData: The given list length was insufficient to hold all available entries

This method lists all affected features, whether they are currently available or
not. The value of affected features depends directly or indirectly on this feature
(including all selected features). The list of features does not change as long as
the camera/interface is connected. This function is usually called twice: once
with an empty array to query the length of the list, and then again with an array
of the correct length.

VmbFeatureListSelected()
List all the features selected by a given feature for this module.

 Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

out VmbFeatureInfo_t* pFeatureInfoList An array of VmbFeatureInfo_t to be filled by the
API. May be NULL if pNumFound is used for size
query.

in VmbUint32_t listLength Number of VmbFeatureInfo_t elements provided

out VmbUint32_t* pNumFound Number of VmbFeatureInfo_t elements found.
May be NULL if pFeatureInfoList is not NULL.

in VmbUint32_t sizeofFeatureInfo Size of a VmbFeatureInfo_t entry

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorStructSize: The given struct size is not valid for this version of the API
• VmbErrorMoreData: The given list length was insufficient to hold all available entries

Function reference

12

This method lists all selected features, whether they are currently available or
not. Features with selected features ("selectors") have no direct impact on the
camera, but only influence the register address that selected features point to.
The list of features does not change while the camera/interface is connected.
This function is usually called twice: once with an empty array to query the
length of the list, and then again with an array of the correct length.

VmbFeatureAccessQuery()
Return the dynamic read and write capabilities of this feature.

 Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features.

in const char * name Name of the feature.

out VmbBool_t * pIsReadable Indicates if this feature is readable. May be NULL.

out VmbBool_t * pIsWriteable Indicates if this feature is writable. May be NULL.

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorBadParameter: If "pIsReadable" and "pIsWriteable" were both NULL
• VmbErrorNotFound: The feature was not found

The access mode of a feature may change. For example, if "PacketSize" is locked
while image data is streamed, it is only readable.

Function reference

13

Integer
VmbFeatureIntGet()
Get the value of an integer feature.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

out VmbInt64_t* pValue Value to get

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Integer
• VmbErrorNotFound: The feature was not found
• VmbErrorBadParameter: If "name" or "pValue" is NULL

VmbFeatureIntSet()
Set the value of an integer feature.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

in VmbInt64_t value Value to set

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Integer
• VmbErrorInvalidValue: If "value" is either out of bounds or not an increment of the minimum
• VmbErrorBadParameter: If "name" is NULL

Function reference

14

• VmbErrorNotFound: If the feature was not found
• VmbErrorInvalidCall: If called from frame callback

VmbFeatureIntRangeQuery()
Query the range of an integer feature.

 Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

out VmbInt64_t* pMin Minimum value to be returned. May be NULL.

out VmbInt64_t* pMax Maximum value to be returned. May be NULL.

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorBadParameter: If "name" is NULL or "pMin" and "pMax" are NULL
• VmbErrorWrongType: The type of feature "name" is not Integer
• VmbErrorNotFound: If the feature was not found

VmbFeatureIntIncrementQuery()
Query the increment of an integer feature.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

out VmbInt64_t* pValue Value of the increment to get.

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command

Function reference

15

• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Integer
• VmbErrorNotFound: The feature was not found
• VmbErrorBadParameter: If "name" or "pValue" is NULL

Function reference

16

Float
VmbFeatureFloatGet()
Get the value of a float feature.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

out double* pValue Value to get

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Float
• VmbErrorBadParameter: If "name" or "pValue" is NULL
• VmbErrorNotFound: The feature was not found

VmbFeatureFloatSet()
Set the value of a float feature.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

in double value Value to set

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Float
• VmbErrorInvalidValue: If "value" is not within valid bounds
• VmbErrorNotFound: The feature was not found

Function reference

17

• VmbErrorBadParameter: If "name" is NULL
• VmbErrorInvalidCall: If called from frame callback

VmbFeatureFloatRangeQuery()
Query the range of a float feature.

 Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

out double* pMin Minimum value to be returned. May be NULL.

out double* pMax Maximum value to be returned. May be NULL.

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Float
• VmbErrorNotFound: The feature was not found
• VmbBadParameter: If "name" is NULL or "pMin" and "pMax" are NULL

Only one of the values may be queried if the other parameter is set to NULL, but
if both parameters are NULL, an error is returned.

VmbFeatureFloatIncrementQuery()
Query the increment of an float feature.

Function reference

18

 Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

out VmbBool_t * pHasIncrement "true" if this float feature has an increment.

out double* pValue Value of the increment to get.

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Integer
• VmbErrorNotFound: The feature was not found
• VmbErrorBadParameter: If "name" or "pValue" is NULL

Function reference

19

Enum
VmbFeatureEnumGet()
Get the value of an enumeration feature.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

out const char** pValue The current enumeration value. The returned value is a ref-
erence to the API value

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Enumeration
• VmbErrorNotFound: The feature was not found
• VmbErrorBadParameter: If "name" or "pValue" is NULL

VmbFeatureEnumSet()
Set the value of an enumeration feature.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

in const char* value Value to set

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Enumeration

Function reference

20

• VmbErrorInvalidValue: If "value" is not within valid bounds
• VmbErrorNotFound: The feature was not found
• VmbErrorBadParameter: If "name" ore "value" is NULL
• VmbErrorInvalidCall: If called from frame callback

VmbFeatureEnumRangeQuery()
Query the value range of an enumeration feature.

 Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

out const char** pNameArray An array of enumeration value names; may be NULL if
pNumFilled is used for size query

in VmbUint32_t arrayLength Number of elements in the array

out VmbUint32_t * pNumFilled Number of filled elements; may be NULL if pNameArray
is not NULL

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorMoreData: The given array length was insufficient to hold all available entries
• VmbErrorWrongType: The type of feature "name" is not Enumeration
• VmbErrorNotFound: The feature was not found
• VmbErrorBadParameter: If "name" is NULL or "pNameArray" and "pNumFilled" are NULL

VmbFeatureEnumIsAvailable()
Check if a certain value of an enumeration is available.

Function reference

21

 Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

in const char* value Value to check

out VmbBool_t * pIsAvailable Indicates if the given enumeration value is available

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Enumeration
• VmbErrorNotFound: The feature was not found
• VmbErrorBadParameter: If "name" or "value" or "pIsAvailable" is NULL

VmbFeatureEnumAsInt()
Get the integer value for a given enumeration string value.

 Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

in const char* value The enumeration value to get the integer value for

out VmbInt64_t* pIntVal The integer value for this enumeration entry

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Enumeration
• VmbErrorNotFound: The feature was not found
• VmbErrorBadParameter: If "name" or "value" or "pIntVal" is NULL

Converts a name of an enum member into an int value ("Mono12Packed" to
0x10C0006)

Function reference

22

VmbFeatureEnumAsString()
Get the enumeration string value for a given integer value.

 Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the feature

in VmbInt64_t intValue The numeric value

out const char** pStringValue The string value for the numeric value

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Enumeration
• VmbErrorNotFound: The feature was not found
• VmbErrorBadParameter: If "name" or "pStringValue" is NULL

Converts an int value to a name of an enum member (e.g. 0x10C0006 to
"Mono12Packed")

VmbFeatureEnumEntryGet()
Get infos about an entry of an enumeration feature.

 Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes
features

in const char* featureName Name of the feature

in const char* entryName Name of the enum entry of that fea-
ture

out VmbFeatureEnumEntry_t* pFeatureEnumEntry Infos about that entry returned by
the API

in VmbUint32_t sizeofFeatureEnumEntry Size of the structure

Function reference

23

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorStructSize Size of VmbFeatureEnumEntry_t is not compatible with the API version
• VmbErrorWrongType: The type of feature "name" is not Enumeration
• VmbErrorNotFound: The feature was not found
• VmbErrorBadParameter: If "featureName" or "entryName" or "pFeatureEnumEntry" is NULL

Function reference

24

String
VmbFeatureStringGet()
Get the value of a string feature.

 Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the string feature

out char* buffer String buffer to fill. May be NULL if pSizeFilled is used for
size query.

in VmbUint32_t bufferSize Size of the input buffer

out VmbUint32_t* pSizeFilled Size actually filled. May be NULL if buffer is not NULL.

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorMoreData: The given buffer size was too small
• VmbErrorNotFound: The feature was not found
• VmbErrorWrongType: The type of feature "name" is not String

This function is usually called twice: once with an empty buffer to query the
length of the string, and then again with a buffer of the correct length.

VmbFeatureStringSet()
Set the value of a string feature.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the string feature

in const char* value Value to set

Function reference

25

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorNotFound: The feature was not found
• VmbErrorWrongType: The type of feature "name" is not String
• VmbErrorInvalidValue: If length of "value" exceeded the maximum length
• VmbErrorBadParameter: If "name" or "value" is NULL
• VmbErrorInvalidCall: If called from frame callback

VmbFeatureStringMaxlengthQuery()
Get the maximum length of a string feature.

 Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the string feature

out VmbUint32_t* pMaxLength Maximum length of this string feature

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not String
• VmbErrorBadParameter: If "name" or "pMaxLength" is NULL

Function reference

26

Boolean
VmbFeatureBoolGet()
Get the value of a boolean feature.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the boolean feature

out VmbBool_t * pValue Value to be read

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Boolean
• VmbErrorNotFound: If feature is not found
• VmbErrorBadParameter: If "name" or "pValue" is NULL

VmbFeatureBoolSet()
Set the value of a boolean feature.

Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the boolean feature

in VmbBool_t value Value to write

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Boolean
• VmbErrorInvalidValue: If "value" is not within valid bounds
• VmbErrorNotFound: If the feature is not found

Function reference

27

• VmbErrorBadParameter: If "name" is NULL
• VmbErrorInvalidCall: If called from frame callback

Function reference

28

Command
VmbFeatureCommandRun()
Run a feature command.

 Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the command feature

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Command
• VmbErrorNotFound: Feature was not found
• VmbErrorBadParameter: If "name" is NULL

VmbFeatureCommandIsDone()
Check if a feature command is done.

 Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the command feature

out VmbBool_t * pIsDone State of the command.

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Command
• VmbErrorNotFound: Feature was not found
• VmbErrorBadParameter: If "name" or "pIsDone" is NULL

Function reference

29

Raw
VmbFeatureRawGet()
Read the memory contents of an area given by a feature name.

 Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the raw feature

out char* pBuffer Buffer to fill

in VmbUint32_t bufferSize Size of the buffer to be filled

out VmbUint32_t* pSizeFilled Number of bytes actually filled

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Register
• VmbErrorNotFound: Feature was not found
• VmbErrorBadParameter: If "name" or "pBuffer" or "pSizeFilled" is NULL

This feature type corresponds to a top-level "Register" feature in GenICam. Data
transfer is split up by the transport layer if the feature length is too large. You
can get the size of the memory area addressed by the feature "name" by
VmbFeatureRawLengthQuery().

VmbFeatureRawSet()
Write to a memory area given by a feature name.

Function reference

30

 Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the raw feature

in const char* pBuffer Data buffer to use

in VmbUint32_t bufferSize Size of the buffer

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Register
• VmbErrorNotFound: Feature was not found
• VmbErrorBadParameter: If "name" or "pBuffer" is NULL
• VmbErrorInvalidCall: If called from frame callback

This feature type corresponds to a first-level "Register" node in the XML file.
Data transfer is split up by the transport layer if the feature length is too large.
You can get the size of the memory area addressed by the feature "name" by
VmbFeatureRawLengthQuery().

VmbFeatureRawLengthQuery()
Get the length of a raw feature for memory transfers.

 Type Name Description

in const VmbHandle_t handle Handle for an entity that exposes features

in const char* name Name of the raw feature

out VmbUint32_t* pLength Length of the raw feature area (in bytes)

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorWrongType: The type of feature "name" is not Register
• VmbErrorNotFound: Feature not found

Function reference

31

• VmbErrorBadParameter: If "name" or "pLength" is NULL

This feature type corresponds to a first-level "Register" node in the XML file.

Function reference

32

Feature invalidation
VmbFeatureInvalidationRegister()
Register a VmbInvalidationCallback callback for feature invalidation signaling.

 Type Name Description

in const VmbHandle_t handle Handle for an entity that emits events

in const char* name Name of the event

in VmbInvalidationCallback callback Callback to be run, when invalidation occurs

in void* pUserContext User context passed to function

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode

Any feature change, either of its value or of its access state, may be tracked by
registering an invalidation callback. Registering multiple callbacks for one
feature invalidation event is possible because only the combination of handle,
name, and callback is used as key. If the same combination of handle, name,
and callback is registered a second time, it overwrites the previous one.

VmbFeatureInvalidationUnregister()
Unregister a previously registered feature invalidation callback.

Type Name Description

in const VmbHandle_t handle Handle for an entity that emits events

in const char* name Name of the event

in VmbInvalidationCallback callback Callback to be removed

• VmbErrorSuccess: If no error

Function reference

33

• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode

Since multiple callbacks may be registered for a feature invalidation event, a
combination of handle, name, and callback is needed for unregistering, too.

Function reference

34

Image preparation and acquisition
VmbFrameAnnounce()
Announce frames to the API that may be queued for frame capturing later.

 Type Name Description

in const VmbHandle_t cameraHandle Handle for a camera

in const VmbFrame_t* pFrame Frame buffer to announce

in VmbUint32_t sizeofFrame Size of the frame structure

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given camera handle is not valid
• VmbErrorBadParameter: The given frame pointer is not valid or "sizeofFrame" is 0
• VmbErrorStructSize: The given struct size is not valid for this version of the API

Allows some preparation for frames like DMA preparation depending on the
transport layer. The order in which the frames are announced is not taken into
consideration by the API. The method can be used to annouce a previously
allocated frame buffer to the transport layer. Alternatively, in case
"pFrame->buffer" points to NULL, the method will allocate and announce a new
buffer. In this case "pFrame->buffer" contains the allocated buffer address on
return.

VmbFrameRevoke()
Revoke a frame from the API.

 Type Name Description

in const VmbHandle_t cameraHandle Handle for a camera

in const VmbFrame_t* pFrame Frame buffer to be removed from the list of announced
frames

• VmbErrorSuccess: If no error

Function reference

35

• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given camera handle is not valid
• VmbErrorBadParameter: The given frame pointer is not valid
• VmbErrorStructSize: The given struct size is not valid for this version of the API

The referenced frame is removed from the pool of frames for capturing images.

VmbFrameRevokeAll()
Revoke all frames assigned to a certain camera.

Type Name Description

in const VmbHandle_t cameraHandle Handle for a camera

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given camera handle is not valid

VmbCaptureStart()
Prepare the API for incoming frames.

Type Name Description

in const VmbHandle_t cameraHandle Handle for a camera

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorDeviceNotOpen: Camera was not opened for usage
• VmbErrorInvalidAccess: Operation is invalid with the current access mode

Function reference

36

VmbCaptureEnd()
Stop the API from being able to receive frames.

Type Name Description

in const VmbHandle_t cameraHandle Handle for a camera

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid

Consequences of VmbCaptureEnd(): - The frame callback will not be called
anymore

VmbCaptureFrameQueue()
Queue frames that may be filled during frame capturing.

 Type Name Description

in const VmbHandle_t cameraHandle Handle of the camera

in const VmbFrame_t* pFrame Pointer to an already announced frame

in VmbFrameCallback callback Callback to be run when the frame is complete. NULL
is Ok.

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given frame is not valid
• VmbErrorStructSize: The given struct size is not valid for this version of the API

The given frame is put into a queue that will be filled sequentially. The order in
which the frames are filled is determined by the order in which they are
queued. If the frame was announced with VmbFrameAnnounce() before, the
application has to ensure that the frame is also revoked by calling
VmbFrameRevoke() or VmbFrameRevokeAll() when cleaning up.

Function reference

37

VmbCaptureFrameWait()
Wait for a queued frame to be filled (or dequeued).

 Type Name Description

in const VmbHandle_t cameraHandle Handle of the camera

in const VmbFrame_t* pFrame Pointer to an already announced & queued frame

in VmbUint32_t timeout Timeout (in milliseconds)

• VmbErrorSuccess: If no error
• VmbErrorTimeout: Call timed out
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid

VmbCaptureQueueFlush()
Flush the capture queue.

Type Name Description

in const VmbHandle_t cameraHandle Handle of the camera to flush

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid

Control of all the currently queued frames will be returned to the user, leaving
no frames in the capture queue. After this call, no frame notification will occur
until frames are queued again.

Function reference

38

Interface Enumeration & Information
VmbInterfacesList()
List all the interfaces currently visible to VimbaC.

 Type Name Description

out VmbInterfaceInfo_t* pInterfaceInfo Array of VmbInterfaceInfo_t, allocated by the
caller. The interface list is copied here. May be
NULL.

in VmbUint32_t listLength Number of entries in the caller's pList array

out VmbUint32_t* pNumFound Number of interfaces found (may be more
than listLength!) returned here.

in VmbUint32_t sizeofInterfaceInfo Size of one VmbInterfaceInfo_t entry

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorStructSize: The given struct size is not valid for this API version
• VmbErrorMoreData: The given list length was insufficient to hold all available entries
• VmbErrorBadParameter: If "pNumFound" was NULL

All the interfaces known via GenICam TransportLayers are listed by this
command and filled into the provided array. Interfaces may correspond to
adapter cards or frame grabber cards or, in the case of FireWire to the whole
1394 infrastructure, for instance. This function is usually called twice: once with
an empty array to query the length of the list, and then again with an array of
the correct length.

VmbInterfaceOpen()
Open an interface handle for feature access.

 Type Name Description

in const char* idString The ID of the interface to get the handle for (returned by
VmbInterfacesList())

out VmbHandle_t* pInterfaceHandle The handle for this interface.

Function reference

39

in const VmbHandle_t interfaceHandle The handle of the interface to close.

Description Name Type

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorNotFound: The designated interface cannot be found
• VmbErrorBadParameter: If "pInterfaceHandle" was NULL

An interface can be opened if interface-specific control or information is
required, e.g. the number of devices attached to a specific interface. Access is
then possible via feature access methods.

VmbInterfaceClose()
Close an interface.

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid

After configuration of the interface, close it by calling this function.

Function reference

40

in VmbHandle_t ancillaryDataHandle Handle to ancillary frame data

Description Name Type

Ancillary data
VmbAncillaryDataOpen()
Get a working handle to allow access to the elements of the ancillary data via feature access.

 Type Name Description

in VmbFrame_t* pFrame Pointer to a filled frame

out VmbHandle_t* pAncillaryDataHandle Handle to the ancillary data inside the frame

• VmbErrorSuccess: No error
• VmbErrorBadHandle: Chunk mode of the camera was not activated. See feature

ChunkModeActive
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command

This function can only succeed if the given frame has been filled by the API.

VmbAncillaryDataClose()
Destroy the working handle to the ancillary data inside a frame.

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid

After reading the ancillary data and before re-queuing the frame, ancillary data
must be closed.

Function reference

41

Memory/Register access
VmbMemoryRead()
Read an array of bytes.

 Type Name Description

in const VmbHandle_t handle Handle for an entity that allows memory access

in VmbUint64_t address Address to be used for this read operation

in VmbUint32_t bufferSize Size of the data buffer to read

out char* dataBuffer Buffer to be filled

out VmbUint32_t* pSizeComplete Size of the data actually read

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode

VmbMemoryWrite()
Write an array of bytes.

 Type Name Description

in const VmbHandle_t handle Handle for an entity that allows memory access

in VmbUint64_t address Address to be used for this read operation

in VmbUint32_t bufferSize Size of the data buffer to write

in const char* dataBuffer Data to write

out VmbUint32_t* pSizeComplete Number of bytes successfully written; if an error oc-
curs this is less than bufferSize

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command

Function reference

42

• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorMoreData: Not all data were written; see pSizeComplete value for the number of bytes

written

VmbRegistersRead()
Read an array of registers.

 Type Name Description

in const VmbHandle_t handle Handle for an entity that allows register ac-
cess

in VmbUint32_t readCount Number of registers to be read

in const VmbUint64_t* pAddressArray Array of addresses to be used for this read
operation

out VmbUint64_t* pDataArray Array of registers to be used for this read op-
eration

out VmbUint32_t* pNumCompleteReads Number of reads completed

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorIncomplete: Not all the requested reads could be completed

Two arrays of data must be provided: an array of register addresses and one for
corresponding values to be read. The registers are read consecutively until an
error occurs or all registers are written successfully.

VmbRegistersWrite()
Write an array of registers.

Function reference

43

 Type Name Description

in const VmbHandle_t handle Handle for an entity that allows register ac-
cess

in VmbUint32_t writeCount Number of registers to be written

in const VmbUint64_t* pAddressArray Array of addresses to be used for this write
operation

in const VmbUint64_t* pDataArray Array of reads to be used for this write op-
eration

out VmbUint32_t* pNumCompleteWrites Number of writes completed

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorIncomplete: Not all the requested writes could be completed

Two arrays of data must be provided: an array of register addresses and one
with the corresponding values to be written to these addresses. The registers
are written consecutively until an error occurs or all registers are written
successfully.

VmbCameraSettingsSave()
Saves all feature values to XML file.

 Type Name Description

in const VmbHandle_t handle Handle for an entity that allows register
access

in const char* fileName Name of XML file to save settings

in VmbFeaturePersistSettings_t* pSettings Settings struct

in VmbUint32_t sizeofSettings Size of settings struct

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command

Function reference

44

• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorBadParameter: If "fileName" is NULL

Camera must be opened beforehand and function needs corresponding handle.
With given filename parameter path and name of XML file can be determined.
Additionally behaviour of function can be set with providing 'persistent struct'.

VmbCameraSettingsLoad()
Load all feature values from XML file to device.

 Type Name Description

in const VmbHandle_t handle Handle for an entity that allows register
access

in const char* fileName Name of XML file to save settings

in VmbFeaturePersistSettings_t* pSettings Settings struct

in VmbUint32_t sizeofSettings Size of settings struct

• VmbErrorSuccess: If no error
• VmbErrorApiNotStarted: VmbStartup() was not called before the current command
• VmbErrorBadHandle: The given handle is not valid
• VmbErrorInvalidAccess: Operation is invalid with the current access mode
• VmbErrorBadParameter: If "fileName" is NULL

Camera must be opened beforehand and function needs corresponding handle.
With given filename parameter path and name of XML file can be determined.
Additionally behaviour of function can be set with providing 'settings struct'.

	Callbacks
	VmbInvalidationCallback
	VmbFrameCallback

	API Version
	VmbVersionQuery()

	API Initialization
	VmbStartup()
	VmbShutdown()

	Camera Enumeration & Information
	VmbCamerasList()
	VmbCameraInfoQuery()
	VmbCameraOpen()
	VmbCameraClose()

	Features
	VmbFeaturesList()
	VmbFeatureInfoQuery()
	VmbFeatureListAﬀected()
	VmbFeatureListSelected()
	VmbFeatureAccessQuery()

	Integer
	VmbFeatureIntGet()
	VmbFeatureIntSet()
	VmbFeatureIntRangeQuery()
	VmbFeatureIntIncrementQuery()

	Float
	VmbFeatureFloatGet()
	VmbFeatureFloatSet()
	VmbFeatureFloatRangeQuery()
	VmbFeatureFloatIncrementQuery()

	Enum
	VmbFeatureEnumGet()
	VmbFeatureEnumSet()
	VmbFeatureEnumRangeQuery()
	VmbFeatureEnumIsAvailable()
	VmbFeatureEnumAsInt()
	VmbFeatureEnumAsString()
	VmbFeatureEnumEntryGet()

	String
	VmbFeatureStringGet()
	VmbFeatureStringSet()
	VmbFeatureStringMaxlengthQuery()

	Boolean
	VmbFeatureBoolGet()
	VmbFeatureBoolSet()

	Command
	VmbFeatureCommandRun()
	VmbFeatureCommandIsDone()

	Raw
	VmbFeatureRawGet()
	VmbFeatureRawSet()
	VmbFeatureRawLengthQuery()

	Feature invalidation
	VmbFeatureInvalidationRegister()
	VmbFeatureInvalidationUnregister()

	Image preparation and acquisition
	VmbFrameAnnounce()
	VmbFrameRevoke()
	VmbFrameRevokeAll()
	VmbCaptureStart()
	VmbCaptureEnd()
	VmbCaptureFrameQueue()
	VmbCaptureFrameWait()
	VmbCaptureQueueFlush()

	Interface Enumeration & Information
	VmbInterfacesList()
	VmbInterfaceOpen()
	VmbInterfaceClose()

	Ancillary data
	VmbAncillaryDataOpen()
	VmbAncillaryDataClose()

	Memory/Register access
	VmbMemoryRead()
	VmbMemoryWrite()
	VmbRegistersRead()
	VmbRegistersWrite()
	VmbCameraSettingsSave()
	VmbCameraSettingsLoad()

